
A Bailout Bonus bonus.in bonus.out 2 seconds 64 MiB
B Risk Assessment risk.in risk.out 2 seconds 64 MiB
C Stock Trading trading.in trading.out 2 seconds 64 MiB
D Foreclosure Borough borough.in borough.out 2 seconds 64 MiB
E Toxic Assets assets.in assets.out 2 seconds 64 MiB
F Stimulus Package stimulus.in stimulus.out 10 seconds 64 MiB

1

Problem A: Bailout Bonus

File Name: bonus.cpp|bonus.java

Input File: bonus.in

Description

In order to prevent many financial companies from collapsing, the US Government (and several other governments)
“bailed them out”, in the sense that they provided multi-billion dollar emergency loans. After this happened, several
of the companies went ahead and paid their executives massive performance bonuses. After a large public outcry, one
approach that was taken to recoup these bonuses for the government was to impose a massive 95% tax on bonuses for
employees of companies that received bailout money1. Here, you are to compute how much money the government will
recover.

You will be given a list of the companies that received bailout money, and the proposed taxation rate r (such as 95%),
written as an integer (in this case, 95). You will also be given a list of executives with their company affiliation and
proposed bonus. Each executive working for a bailed out company will have to pay an r fraction of his bonus back
(rounded down to the nearest integer). For simplicity, we assume that executives working for companies that weren’t
bailed out have to return none of their bonus.

Input

The first line contains the number K of data sets. This is followed by K data sets, each of the following form:

The first line contains four integers C,B, n, r. 1 ≤ C ≤ 500 is the total number of companies. 0 ≤ B ≤ C is the number
of these companies that were bailed out. 1 ≤ n ≤ 10000 is the total number of executives, and 0 ≤ r ≤ 100 is the taxation
rate in percent.

This is followed by a line containing B integers, the indices (between 1 and C) of the bailed out companies. Finally, there
are n lines, each describing one executive. Each such line consists of two integers ci, pi. 1 ≤ ci ≤ C is the company that
executive i is working for, and pi is the bonus payment that executive i received.

Output

For each data set, first output “Data Set x:” on a line by itself, where x is its number. Then, output, on a line by itself,
the total amount of money recovered by the government via taxes. Each data set should be followed by a blank line.

Sample Input/Output

Sample input bonus.in

2

4 2 6 95

1 4

1 1000000

3 25000

3 102425

4 567444

1 150

4 7000

2 0 2 99

1 500000

2 500000

Corresponding output

Data Set 1:

1495863

Data Set 2:

0

1It remains to be seen whether this will be judged constitutional.

2

Problem B: Risk Assessment

File Name: risk.cpp|risk.java

Input File: risk.in

Description

One way in which investors make informed decisions about what companies to put their money in (e.g., by buying stock) is
by reading independent assessments. There are several services writing these up, and grading stocks. During the heydays
of financial wheeling and dealing, apparently, most companies were judged to be sound investments, even when they had
no discernible business model. All that it would take was a sentence like “a high-yield prospect”, and investors would
follow like lemmings. In fact, a computer program could probably do the same. And guess what: you get to write that
program.

Your program will get a piece of text about one or more companies. There are certain quality words with positive or
negative connotations. For instance “trouble” is negative, and “promising” is positive. For each such word, we will have
a basic quality score. However, sentences can also contain the modifiers “not”, “very”, “extremely” and “slightly”. If
the word “not” appears in a sentence, it changes the value of all quality words in that sentence to 0. “Very” doubles
the value of each quality word in its sentence, “extremely” triples the value of each quality word, and “slightly” halves
the value. These multipliers accumulate multiplicatively: for instance, the sentence “AIG very trouble extremely very.”
assigns “AIG” a score of -12 (assuming “trouble” has a score of -1). Modifiers apply only within a sentence; a sentence is
defined as ending with a ‘.’ (our texts will not contain ‘,’, ‘;’, or ‘:’ or other punctuation).

A piece of text can be about multiple companies. The way we find out what quality words apply to what company is as
follows: from the moment in the text at which a company name appears until the next name of a company (or the end
of the text), we assume that all words refer to that company. All words before the first company name talk about no
company. Notice that multiple companies can be in the same sentence. For instance “AIG trouble Pixar promising very.”
assigns a score of -2 to “AIG” and +2 to “Pixar” (assuming “trouble” counts for -1 and “promising” for +1), because
“very” applies to both “trouble” and “promising” (being in the same sentence with both).

If a company appears in multiple sentences (or multiple blocks), the scores from those sentences are added.

Input

The first line contains the number K of data sets. This is followed by K data sets, each of the following form:

The first line contains three integers C,Q,L. 1 ≤ C ≤ 100 is the number of companies, 1 ≤ Q ≤ 100 the number of quality
words, and 1 ≤ L ≤ 1000 the number of lines of text. This is followed by C lines, each containing the name of a company
(consisting of letters and possibly hyphens). Next come Q lines. Each of these lines contains first a quality word wi (also
possibly containing hyphens), then a space, and then a floating point number qi, the quality score of word i.

Finally, there are L lines of text. Each line has at most 80 characters. All characters are either upper or lower case
characters, hyphens (which are part of words), ‘.’ or space. Company names only match if the case is correct, i.e., “AIG”
does not match “aig”. However, quality words or modifiers match irrespective of case, e.g, “trouble” matches “tRoubLE”
and “Very” matches “veRY”. Our input will ensure that no two quality words are the same, and no company name is the
same as any other company name or quality word.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. Then, output the quality scores for
all C companies (rounded to two decimals), one per line. They should be in the same order as the company names were
given in the input. Each data set should be followed by an empty line.

Sample Input/Output

See next page

3

Sample input risk.in

1

4 5 7

AIG

Pixar

Wells-Fargo

Microsoft

risky -0.5

promising 1

bad -1.5

blue-chip 1.5

trouble -1

In these risky economic times make good

investments. Not bad ones. Microsoft is still very blue-chip stock but

AIG looks risky. Pixar is not bad up-and-coming. Could even be

slightly promising. Not very risky. Not blue-chip

though. wells-fargo is extremely bad.

Considering MICROSOFT more it is promising.

Wells-Fargo is not blue-chip in fact extremely risky. Bad. Very very bad.

Corresponding output

Data Set 1:

-1.00

-3.00

-7.50

3.00

4

Problem C: Stock Trading

File Name: trading.cpp|trading.java

Input File: trading.in

Description

Stock trading is a great way to make money if you think that the high-stakes tables in Las Vegas are not risky enough
for you. The idea of trading stock is quite simple: you try to buy stock when the price is low, and sell when the price
is high. Only thing is: you don’t know whether the price will go up or down next. But if you did, the problem would
become much easier. Here, we are going to explore how to find an optimal investment strategy in retrospect.

There are n stocks total, and D days. For each day, you are given the cost of each stock i. You start out with a capital
of C dollars. On each day, you can buy or sell arbitrary amounts of combinations of stock, of course not exceeding your
capital. However, there is one more rule, namely, that you can make at most t trades total (where you will be given the
parameter t). A trade is the act of either buying or selling one kind of stock. We assume that you do not need to buy
stock in integer amounts, e.g., you can buy 1.364 units of a stock, if you want. If you buy multiple kinds on the same day,
you are using multiple trades. Your goal is to maximize the total amount of money you have after D days. (This only
counts cash; any stock you still hold after D days is useless.)

Input

The first line is the number K of input data sets, followed by the K data sets, each of the following form:

The first line contains integers n,D, t and a floating point number C. 1 ≤ n ≤ 100 is the number of stocks, 1 ≤ D ≤ 100
the number of days, and 0 ≤ t ≤ 100 the number of trades you can make. C ≥ 0 is your starting capital.

This is followed by D lines, each containing n floating point numbers rd,i ≥ 0. rd,i is the price at which stock i trades on
day d. All the prices for one day will be on the same line.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. On the next line, output the maximum
amount of money you can have after the D days (rounded to two decimals), having made at most t trades total. Each
data set should be followed by a blank line.

Sample Input/Output

Sample input trading.in

2

1 2 1 100.0

1.0

98.0

3 8 6 100.0

1 1 9.5

2 10.5 2

4 15 4.1

4 15 5

5 5.1 1.8

6 8 1

6.5 2.5 1

6.5 2 1

Corresponding output

Data Set 1:

100.0

Data Set 2:

4265.62

5

Problem D: Foreclosure Borough

File Name: borough.cpp|borough.java

Input File: borough.in

Description

One of the causes (and consequences) of the financial crisis is the large number of home foreclosures. The fact that many
derivatives were backed by mortgages, on which the homeowners then foreclosed, is part of the problem that financial
institutions are facing. In turn, by losing work and other income sources, individuals cannot make their mortgage payments
any more, and need to foreclose their homes. As you might expect, it’s a bit of a vicious cycle.

Some areas are harder hit than others by this. There are areas where a significant percentage of homes is in foreclosure
right now. You are to write a program that finds out which areas are most affected.

You will be given the coordinates of houses, and whether or not they are in foreclosure. Then, you will be given simple
(i.e., not self-intersecting) polygons representing different boroughs or areas. These polygons might overlap. You are to
compute the percentage of houses in foreclosure in each of them, and to sort the boroughs by this foreclosure rate.

Input

The first line contains the number K of data sets. This is followed by K data sets, each of the following form:

The first line contains two integers H,B, the number of houses (1 ≤ H ≤ 1000) and boroughs (1 ≤ B ≤ 100), respectively.
This is followed by H lines, each describing a house, by giving its x and y coordinates (floating point numbers), and a
character ‘Y’ (in foreclosure) or ‘N’ (not in foreclosure).

This is followed by the description of B boroughs. Each borough is described by a line. The first entry of the line is an
integer c ≥ 3, the number of corner points of the polygon. This is followed by 2c floating point numbers. Each pair of
floating point numbers describes one of the c corners, in the order x1, y1, x2, y2, . . . , xc, yc. The points will be given in
counter-clockwise order.

Our inputs will ensure that no house lies exactly on the border of a borough. Also, each borough will contain at least one
house.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. Then, on c lines, output the foreclosure
rates for all boroughs. Sort the lines by non-increasing foreclosure rates, breaking ties by lower borough number. Each
line should first contain the number of the borough, and then the foreclosure rate, rounded to two decimals. Each data
set should be followed by an empty line.

Sample input borough.in

1

8 3

0 0 Y

0 1 N

1 0.5 N

0.7 0.7 Y

-0.5 0 N

-5 0 N

0.7 0 Y

3.4 0.95 N

3 -1 -0.5 1 -0.5 -1 0.75

4 -0.2 -0.5 1 -0.2 3 1.5 -0.2 1.5

5 0.5 0 1.5 -0.2 4 1.2 1 0 0.5 1.5

Corresponding output

Data Set 1:

3: 66.67%

2: 60.00%

1: 50.00%

6

Problem E: Toxic Assets

File Name: assets.cpp|assets.java

Input File: assets.in

Description

One of the reasons that home foreclosures have had such a huge impact on the economy is that various financial institutions
invented mortgage-backed derivatives. Essentially, the right to the mortgage payments was packaged as an investment,
i.e., sold to other investors in small chunks. These chunks might then be mixed with other investments, and repackaged
and sold further. Thus, you have all kinds of derivatives whose real worth depends on mortgages hard to trace2. If you
find out how the basic “building blocks” upon which all the derivatives rely are changing in value, it might not be at all
obvious to find out what your portfolio is really worth now. You might have to track it through a chain of derivatives.

Here is how we will model this. You have some basic investments, such as mortgages. For each of those, we assume that
one unit was worth $1 before, and we will tell you how much it is worth now. Then, we have derivatives. Each derivative
will be composed of one or more basic investments or other derivatives. You will get a list of other investments, together
with the percentage that they contribute to the derivative (those percentages will add up, of course). We will ensure that
each derivative will only contain basic investments, or derivatives with a lower number. In particular, there will be no
cycles. Finally, we will give you the percentages of investments in your portfolio. Your goal is to calculate how much one
unit of your portfolio (which was initially worth $1) is worth now.

Input

The first line contains the number K of data sets. This is followed by K data sets, each of the following form:

The first line of each data set contains two integer numbers B,D, the number of basic investments (1 ≤ B ≤ 100) and
the number of derivatives (0 ≤ D ≤ 100). We will number the basic ones 1, . . . , B, and the derivatives B + 1, . . . , B + D.
This is followed by a line with B non-negative floating point numbers, the current values of one unit of each of the basic
investments in order.

Next will be D lines. The dth line will consist of B + d− 1 non-negative floating point numbers, describing the percentage
of investment B +d that is made up of investments 1, . . . , B +d−1. These numbers will always add up to 1. No derivative
ever contains parts of a derivative with a higher number.

Finally, there will be one more line with B + D non-negative floating point numbers (adding up to 1). This line tells you
what percentage of your portfolio is made up of each of the investments.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. On the next line, output the current
value of one unit of your portfolio, rounded to two decimals. Each data set should be followed by one empty line.

Sample Input/Output

Sample input assets.in

1

3 4

0.01 1.1 0.4

0.5 0.25 0.25

0.9 0 0 0.1

0 0 0 0.5 0.5

0 0.5 0 0 0.3 0.2

0 0 0.2 0.2 0.2 0.2 0.2

Corresponding output

Data Set 1:

0.33

2This description is certainly an oversimplification. It’s as best as we understand what is happening. In fact, another reason that the

economy is not doing so well is that very few people actually understood how these derivatives work.

7

Problem F: Stimulus Package

File Name: stimulus.cpp|stimulus.java

Input File: stimulus.in

Description

In an attempt to mitigate the impacts of the economic crisis, the US Government has passed a massive stimulus package.
The idea is that since other investors are shying away from spending money (partly due to lack of money, partly due to
fear), the government should invest in worthwhile causes which will create jobs at the same time, thus helping the economy
recover. Of course, this leads to a big decision of which projects are worthy. There are several variables of importance
here: how many jobs are created, how much the project costs, and how much permanent infrastructure or knowledge is
created. For job creation, there is also the consideration that some projects generate jobs immediately (e.g., building a
bridge), while others might generate jobs in the future (e.g., computer science research). Thus, there is a complicated
tradeoff. (And we haven’t even talked about geographic balance yet.)

In this problem, you are to write a program to find in a sense the “best” selection of projects to fund. For each project i,
you will be given its cost ci, infrastructure gain gi, and job creation for the next Y years ji,1, ji,2, . . . , ji,Y . You are also
given a total budget B, and job creation targets J1, J2, . . . , JY . You are to find out if there is a selection of projects that
will meet all job creation requirements without exceeding the budget. If there is such a selection, you are to output the
maximum total infrastructure gain of any such selection.

Input

The first line is the number K of input data sets, followed by the K data sets, each of the following form:

The first line of each data set contains three integers n, Y,B. n ≤ 20 is the total number of projects you are considering,
1 ≤ Y ≤ 50 is the number of years you are looking into the future, and 0 ≤ B ≤ 1000000000 is your total budget.

This is followed by one line with Y integers, containing the job creation targets J1, . . . , JY . Finally, there are n lines, each
containing Y + 2 integers. The ith line contains first the job creation numbers ji,1, . . . , ji,Y for the ith project, then the
cost of the project, and finally the infrastructure gain gi for project i.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. On the next line, output either “No
selection.” (if there is no selection meeting all job creation requirements), or the best total infrastructure gain among all
selections that meet the job creation requirements. Each data set should be followed by a blank line.

Sample Input/Output

Sample input stimulus.in

2

6 6 100

2 2 2 2 2 2

3 0 3 0 3 0 50 100

1 1 0 0 0 0 20 10

0 0 1 1 0 0 20 10

0 0 0 0 1 1 20 10

0 3 0 3 0 3 55 30

1 1 1 1 1 1 40 0

4 2 10

2 2

2 1 7 1

0 1 5 1

1 1 4 2

1 0 2 3

Corresponding output

Data Set 1:

30

Data Set 2:

No selection.

8

	firstpage.pdf
	day1.pdf

